Casual
РЦБ.RU

К теории управления портфелем

Март 2006


    В настоящей статье предприняты первые шаги в создании общей методологии управления портфелем для достаточно широкого класса стратегий.

    История биржевой торговли насчитывает не одно столетие. Существует множество различных рекомендаций по управлению, однако общие теории управления портфелем разработаны пока недостаточно. Известная теория лауреата Нобелевской премии Гарри Марковица применима только к весьма узкому классу стратегий. Попытки распространения этой теории на другие классы стратегий сталкиваются с весьма большими теоретическими и практическими сложностями, что не позволяет рассматривать теорию Марковица как общую теорию управления портфелем.

ОСНОВНЫЕ СОГЛАШЕНИЯ

    Прежде всего уточним термины, с которыми будем работать. Под финансовыми инструментами будем понимать всевозможные биржевые инструменты, которые можно купить и продать на бирже. Это могут быть простые и привилегированные акции, облигации различных типов, опционы и т. д. В разные моменты времени набор доступных для работы финансовых инструментов может меняться, что связано с ограниченностью времени существования финансовых инструментов.
    Под "стратегией" мы будем понимать набор алгоритмов, который в каждый момент времени определяет все действия по отношению к любому финансовому инструменту, существующему на данный момент. Так, если взять некоторую начальную сумму денег и выполнять рекомендации стратегии, то для любого момента времени мы будем иметь набор купленных (в "длинной" позиции) и проданных (в "короткой" позиции) инструментов. Такой набор мы будем называть портфелем финансовых инструментов. Таким образом, портфель на данный момент времени - это результат работы стратегии.
    Стратегии управления портфелем можно классифицировать по различным признакам. Прежде всего можно проводить классификацию по той информации, которую использует стратегия для выработки своих рекомендаций. Если информация может включать сведения об истории развития компаний, экономике государств, то такие стратегии относят к фундаментальным стратегиям (фундаментальный анализ), если используют только информацию о ценах и объемах сделок по финансовым инструментам, то их причисляют к техническим стратегиям (технический анализ).
    Можно классифицировать стратегии по свойствам алгоритмов, которые входят в стратегию. Так, например, в теории Марковица используются стратегии, которые могут осуществлять какие-то активные действия только в одной начальной точке. В последующие моменты времени стратегия бездействует и не вырабатывает никаких рекомендаций. В последний момент инвестиционного периода все открытые позиции закрываются. Такие стратегии носят название "кусочно-постоянные".
    В данном случае уместно отметить, что широкое распространение теории Марковица привело к тому, что часто в литературе вместо понятий "стратегия" и "оценка стратегии" используются понятия "портфель" и "оценка портфеля". Предлагают рискованные, доходные, среднедоходные, малорискованные портфели и т. п. Все эти понятия, связанные с портфелем, осмыслены только при предположении, что в дальнейшем портфель не будет изменяться, как это происходит при использовании кусочно-постоянных стратегий. Если стратегии могут совершать активные действия в любые моменты времени, то такие характеристики портфеля становятся бессмысленными. Оценивать нужно не портфель, а стратегию, которая управляет портфелем. Текущее состояние портфеля в следующий момент времени может сильно измениться из-за активных действий стратегии, поэтому оно не определяет, что будет с состоянием счета в будущем. Все зависит от рынка и стратегии управления.

СЦЕНАРИИ УПРАВЛЕНИЯ ПОРТФЕЛЕМ

    Понятие "стратегия" является общим и включает стратегии, основанные на различных классах сигналов, а также правилах пересмотра структуры этих сигналов и структуры информации, на которой основаны сигналы. Оно содержит любые алгоритмы, приводящие к выработке тех или иных действий с финансовыми инструментами. Использовать понятие произвольной стратегии достаточно трудно, так как нечетко описан класс таких стратегий. Если фиксировать какой-то класс стратегий, то всегда можно построить расширение этого класса, например информационные расширения. Следовательно, если говорить о классе всех стратегий, то нужно подразумевать, что возможные расширения уже сделаны. Но тогда мы столкнемся с необходимостью описания разнообразных расширений, что само по себе является весьма сложной проблемой.
    Вообще понятие класса всех стратегий напоминает понятие множества всех множеств, а последнее, как хорошо известно, ведет к появлению противоречий. Поэтому с теоретической точки зрения аккуратнее рассматривать некоторый конструктивно заданный класс стратегий S. Такой подход мы будем называть конструктивным, а стратегии из множества S - конструктивными.
    Ограничение рассматриваемого класса стратегий может привести к тому, что с помощью только конструктивных стратегий мы не сможем адекватно описать реальное поведение по управлению портфелем. Например, в теории Марковица стратегии описывают выбор портфеля в начальный момент инвестиционного периода. Выбор инвестиционного периода, являющийся неотъемлемой частью описания поведения, в теории Марковица не обсуждается. Поэтому для адекватного описания управления портфелем при рассмотрении конструктивных стратегий необходимо ввести как минимум два дополнительных объекта - функцию выбора и горизонт применения.
    Под горизонтом применения будем понимать функцию, которая в каждый момент времени предлагает логическое значение "да" или "нет". Горизонт применения работает параллельно со стратегией. Как только горизонт впервые выдает "нет", стратегия прекращает свою работу. Будем считать, что выбран некоторый класс конструктивно заданных функций горизонтов, и обозначим его буквой H.
    Пару "стратегия и горизонт" будем называть планом игры. Множество доступных планов - прямое произведение множества конструктивных стратегий на множество функций горизонтов, т. е. S J H.
    Под функцией выбора следует понимать отображение, которое, используя всю доступную к определенному моменту времени информацию, из множества планов предлагает некоторое подмножество планов, которые называются оптимальными. Каждый из оптимальных планов рекомендован для дальнейшего применения в торговле. Если множество оптимальных планов пусто, то это означает, что в текущий момент времени торговать не рекомендуется, а следует закрыть все позиции и "оставаться в деньгах".
    Если функция выбора такова, что ее значение состоит из множества, имеющего не более одного плана, то она будет называться однозначной.
    Пару "функция выбора и множество планов" будем называть сценарием игры. Если функция выбора в сценарии является однозначной, то такой сценарий также будем называть однозначным.
    Понятие сценария удобно для описания процесса управления портфелем. Так, управление портфелем при однозначном сценарии происходит следующим образом. В начальный момент времени функция выбора определяет оптимальный план. Пока горизонт применения из этого плана выдает значение "да", применяется соответствующая стратегия. Как только горизонт дает значение "нет", применение стратегии прекращается и вновь включается функция выбора. Она определяет оптимальный план, и процесс повторяется. Если подобного плана нет, то все позиции закрываются. В следующий момент времени вновь запускается функция выбора.
    Если сценарий неоднозначный, то и процесс работы сценария не является однозначно определенным, так как с каждым шагом функция выбора может предлагать любой из оптимальных планов.
    Конечно, понятие сценария порождает некоторую стратегию или класс стратегий управления портфелем в широком понимании термина "стратегия". Эта стратегия может входить или не входить в класс стратегий S, но в любом случае выделение в явном виде структуры сценария удобно, так как на практике приходится регулярно пересматривать используемые алгоритмы поведения, что и описывается с помощью сценария. Регулярное изменение алгоритмов обусловлено изменением закономерностей рынка, к которым необходимо адаптироваться.
    Особо отметим понятие горизонта применения. Обычно любой класс стратегий формируется на некоторых предположениях о рынке, например о случайности рыночных цен, возможности определения распределения вероятностей по историческим данным, S J H волновой природе рынка или следовании рынка за трендом. Понятие горизонта применения может служить для измерения выполнения этих гипотез в строгой конструктивной форме. Поэтому любой горизонт применения может трактоваться как некая гипотеза о рынке. Если одна гипотеза перестает работать, то с помощью функции выбора она заменяется другой гипотезой. Поскольку мы изначально не делаем никаких предположений о рынке, механизм выбора гипотез (горизонтов применения) позволяет подобрать подходящую гипотезу для текущего состояния рынка.
    Итак, от стратегического описания управления портфелем мы переходим к сценарному описанию. Подчеркнем еще раз, что сценарий - это тоже стратегия. Мы детализируем описание используемых стратегий, что разрешает более адекватно и удобно описывать процесс управления портфелем.

СРАВНЕНИЕ СЦЕНАРИЕВ

    Переход в описании управления портфелем на сценарное описание ставит задачу о разумном выборе самого сценария. Здесь следует отметить, что в приведенной методологической схеме выбор критериев для сравнения сценариев целиком зависит от лица, принимающего решения, в данном случае от управляющего портфелем. В принципе выбор таких критериев может быть произвольным, но разумный управляющий портфелем должен выбирать эти критерии так, чтобы они отражали стремление заработать с помощью сценария как можно больше и при этом иметь минимальные текущие потери. Для формализации этой программы нужно предложить разумные способы сравнения сценариев. Представляется вполне естественным сравнивать сценарии, используя прошлые исторические данные. Собственно другой возможности сравнения нет, так как информация о будущем состоянии рынка неизвестна.
    Мы предлагаем в качестве базовых рассматривать два способа сравнения: точечную оценку и интервальную оценку. Опишем эти варианты для однозначных сценариев.
    Точечная оценка проводится для заданной даты и заданного списка финансовых инструментов и истории (цены, объемы и т. п.) этих финансовых инструментов. Для этой даты подсчитывается оптимальный план. Стратегия плана работает, пока разрешает горизонт применения. Полученные результаты оцениваются по набору выбранных критериев (эффективность, потери и т. д.). В результате получается вектор значений критериев.
    Интервальная оценка проводится для заданных исторического интервала (даты начала и конца), списка финансовых инструментов и истории финансовых инструментов. Работа сценария происходит как последовательность точечных оценок, где конечная точка предыдущего шага служит начальной точкой следующего шага, причем капитал и открытые сделки с предыдущего шага переходят на следующий шаг. Суммарные результаты по всему интервалу оцениваются по тем же критериям, получается вектор значений этих критериев.
    С помощью описанных базовых вариантов оценки можно получить много других оценок. Первое семейство таких оценок получают при варьировании даты для точечной оценки и интервала для интервальной оценки. Другие семейства оценок получают, если варьировать сами исторические данные. В одном варианте эти данные можно заменять реальными данными других финансовых инструментов такого же типа. В другом варианте вариации данных можно получать непосредственно из исторических данных, например, следующим образом: прибавлять различные шумовые составляющие, получать эти данные как случайные реализации некоторого стохастического процесса или использовать другие методы получения данных.
    В результате для каждого сценария получается множество значений вектора критериев для выбранных схем оценок, которое образует матрицу значений критериев. Эти матрицы и являются базой для сравнения сценариев. По сути, получается типичная задача многокритериального сравнения. После задания предпочтения на множестве матриц значений можно сравнивать и отбирать сценарии.
    Естественно, возможно предложить и более общие схемы сравнения сценариев, где используются не только критерии с числовыми значениями, но и более сложные конструкции.
    Пока в описанной схеме множество стратегий S и множество горизонтов H не изменялось. В реальности по мере работы сценария эти множества также могут трансформироваться.
    Важно отметить, что приведенный подход к описанию управления портфелем никак не конкретизировал финансовые инструменты, следовательно, такой подход достаточно универсален и может применяться и к акциям, и к облигациям, и к опционам, и к некоторым другим инструментам. Для того чтобы этот подход мог использоваться на практике, его необходимо реализовать в виде компьютерной программы или комплекса программ, которые должны реализовывать следующие основные функции:

  • обеспечить доступ к историческим данным по инструментам;
  • сформировать различные классы стратегий для различных финансовых инструментов;
  • создать различные классы горизонтов применения;
  • сформировать различные классы функций выбора;
  • выработать различные критерии оценки для результатов симуляции работы сценариев;
  • производить автоматизированную оценку работы сценария с выдачей всевозможной информации о результатах;
  • проводить сравнение сценариев и различную оптимизацию сценариев по различным наборам критериев и с различными понятиями решения для многокритериальной задачи;
  • сопровождать работу сценария или группы сценариев в режиме реального времени (предлагать рекомендации и вести счета).     Некоторые из описанных задач частично были реализованы в компьютерной системе SuperPortfolio, созданной в компании High Technology Invest в 2005 г. В этой системе в качестве финансовых инструментов рассматривались только акции. Однако достаточно полная реализация сценарного подхода и применение его для более широкого спектра финансовых инструментов - дело будущего.

        E-mail автора: mold@ccas.ru, molodtsov@htinvest.ru.

    КОММЕНТАРИЙ СПЕЦИАЛИСТА


        Дмитрий Жабин сотрудник исследовательского отдела АО "РИСК-ИНВЕСТ", канд. физ.-мат. наук

        Статья, посвященная методологическому подходу к управлению портфелем финансовых инструментов, пожалуй, изложена в общей форме. Автор делает попытку формализовать процесс принятия решений по управлению капиталом на финансовом рынке как задачу нахождения сценариев игры.
        Хотелось бы обратить внимание на следующие замечания.
        Во-первых, безусловно, автор прав в том, что теория о размещении средств между различными видами активов (asset allocation problem) недостаточно разработана. Однако со времен публикации пионерской работы Гарри Марковица исследователи все же продвинулись в решении данной проблемы. Заметим, например, что задача стохастического управления для процессов Ито формально может считаться решенной, поскольку может быть сведена к нахождению решения уравнения Гамильтона-Якоби-Беллмана. Из изложенного автором материала следует, что работ, заслуживающих внимания, больше не было опубликовано. При оценке предлагаемой автором методологии отсутствие анализа существующей библиографии по теме статьи может ввести в заблуждение читателя.
        Во-вторых, существует ряд устоявшихся классификаций стратегий управления капиталом (см. классификацию MSCI: http://www.msci.com/hti/HII_factsheet.pdf, APPENDIX II. THE MSCI HEDGE FUND CLASSIFICATION STANDARD). При построении классификации было бы целесообразно либо привести ее в соответствие с принятыми стандартами, либо более четко сформулировать цель, ради которой автор проводит различие между стратегиями.
        Описательный характер статьи призван, скорее, сформировать у читателя определенное информационное пространство. Отсутствие конструктивного наполнения методологии и/или треков управления капиталом не позволяет сделать вывод о практической применимости и эффективности изложенного материала.

    • Рейтинг
    • 0
    Оставить комментарий
    Добавить комментарий анонимно, введите имя:

    Введите код с картинки:
    Добавить комментарий как авторизованный посетитель: Войти в систему

    Содержание (развернуть содержание)
    Факты и комментарии
    "Наша компания становится инвестиционно-промышленной группой" К 11-летию ИДК "Метрополь"
    Американский рынок акций: влияние кризиса
    Оценка динамики курса акций методом скользящей скорости
    Развитие инфрастуктуры финансового рынка как системы расчетов по сделкам с финансовыми инструментами
    Функции Центральных депозитариев Центральной Европы
    Минобороны гарантирует жилье для военных
    Три дня на перерегистрацию прав собственности - календарные или рабочие?
    События
    Добро пожаловать в мир инвестиционных профессионалов!
    Партнерство ACIIA - сила благодаря разнообразию
    Открытая модель российского финансового рынка
    Долгосрочная рыночная информация для инвестиционных аналитиков
    Вопросы по ценным бумагам с фиксированным доходом в международной сертификации инвестиционных аналитиков ACIIA
    Двигатель рынка. Количественная оценка "влияния Запада"
    К теории управления портфелем
    Российский облигационный конгресс - 2005
    Рынок российских региональных облигаций: Итоги 2005 г.
    Долговая политика Москвы
    Управление рисками заимствований и исполнения бюджета Санкт-Петербурга
    Структура инвесторов на российском рублевом рынке облигаций

    • Статьи в открытом доступе
    • Статьи доступны на платной основе
    Актуальные темы    
     Сергей Хестанов
    Девальвация — горькое лекарство
    Оптимальный курс национальной валюты четко связан со структурой экономики и приоритетами денежно-кредитной политики. Для нынешней российской экономики наиболее логичным (и реалистичным) решением бюджетных проблем является девальвация рубля.
    Александр Баранов
    Управление рисками НПФов с учетом новых требований Банка России
    В III кв. 2016 г. вступили в силу новые требования Банка России по организации системы управления рисками негосударственных пенсионных фондов.
    Варвара Артюшенко
    Вместе мы — сила
    Закон синергии гласит: «Целое больше, нежели сумма отдельных частей».
    Сергей Майоров
    Применение blockchain для развития биржевых технологий и сервисов
    Распространение технологий blockchain и распределенного реестра за первоначальные пределы рынка криптовалют — одна из наиболее дискутируемых тем в современной финансовой индустрии.
    Все публикации →
    • Rambler's Top100